20,500 research outputs found

    Weakly Nonlinear Theory of Pattern-Forming Systems with Spontaneously Broken Isotropy

    Full text link
    Quasi two-dimensional pattern forming systems with spontaneously broken isotropy represent a novel symmetry class, that is experimentally accessible in electroconvection of homeotropically aligned liquid crystals. We present a weakly nonlinear analysis leading to amplitude equations which couple the short-wavelength patterning mode with the Goldstone mode resulting from the broken isotropy. The new coefficients in these equations are calculated from the hydrodynamics. Simulations exhibit a new type of spatio-temporal chaos at onset. The results are compared with experiments.Comment: 4 pages, RevTeX, 4 PS-figures, to appear in PR

    Observables in the Decays of B to Two Vector Mesons

    Full text link
    In general there are nine observables in the decay of a B meson to two vector mesons defined in terms of polarization correlations of these mesons. Only six of these can be detected via the subsequent decay angular distributions because of parity conservation in those decays. The remaining three require the measurement of the spin polarization of one of the decay products.Comment: 12 pages, no figur

    Unifying the Fixed Order Evolution of Fragmentation Functions with the Modified Leading Logarithm Approximation

    Full text link
    An approach which unifies the Double Logarithmic Approximation at small x and the leading order DGLAP evolution of fragmentation functions at large x is presented. This approach reproduces exactly the Modified Leading Logarithm Approximation, but is more complete due to the degrees of freedom given to the quark sector and the inclusion of the fixed order terms. We find that data from the largest x values to the peak region can be better fitted than with other approaches

    Spherical Orbifolds for Cosmic Topology

    Full text link
    Harmonic analysis is a tool to infer cosmic topology from the measured astrophysical cosmic microwave background CMB radiation. For overall positive curvature, Platonic spherical manifolds are candidates for this analysis. We combine the specific point symmetry of the Platonic manifolds with their deck transformations. This analysis in topology leads from manifolds to orbifolds. We discuss the deck transformations of the orbifolds and give eigenmodes for the harmonic analysis as linear combinations of Wigner polynomials on the 3-sphere. These provide new tools for detecting cosmic topology from the CMB radiation.Comment: 17 pages, 9 figures. arXiv admin note: substantial text overlap with arXiv:1011.427

    The cognitive demands of second order manual control: Applications of the event related brain potential

    Get PDF
    Three experiments are described in which tracking difficulty is varied in the presence of a covert tone discrimination task. Event related brain potentials (ERPs) elicited by the tones are employed as an index of the resource demands of tracking. The ERP measure reflected the control order variation, and this variable was thereby assumed to compete for perceptual/central processing resources. A fine-grained analysis of the results suggested that the primary demands of second order tracking involve the central processing operations of maintaining a more complex internal model of the dynamic system, rather than the perceptual demands of higher derivative perception. Experiment 3 varied tracking bandwidth in random input tracking, and the ERP was unaffected. Bandwidth was then inferred to compete for response-related processing resources that are independent of the ERP

    An investigation of pulsar searching techniques with the Fast Folding Algorithm

    Full text link
    Here we present an in-depth study of the behaviour of the Fast Folding Algorithm, an alternative pulsar searching technique to the Fast Fourier Transform. Weaknesses in the Fast Fourier Transform, including a susceptibility to red noise, leave it insensitive to pulsars with long rotational periods (P > 1 s). This sensitivity gap has the potential to bias our understanding of the period distribution of the pulsar population. The Fast Folding Algorithm, a time-domain based pulsar searching technique, has the potential to overcome some of these biases. Modern distributed-computing frameworks now allow for the application of this algorithm to all-sky blind pulsar surveys for the first time. However, many aspects of the behaviour of this search technique remain poorly understood, including its responsiveness to variations in pulse shape and the presence of red noise. Using a custom CPU-based implementation of the Fast Folding Algorithm, ffancy, we have conducted an in-depth study into the behaviour of the Fast Folding Algorithm in both an ideal, white noise regime as well as a trial on observational data from the HTRU-S Low Latitude pulsar survey, including a comparison to the behaviour of the Fast Fourier Transform. We are able to both confirm and expand upon earlier studies that demonstrate the ability of the Fast Folding Algorithm to outperform the Fast Fourier Transform under ideal white noise conditions, and demonstrate a significant improvement in sensitivity to long-period pulsars in real observational data through the use of the Fast Folding Algorithm.Comment: 19 pages, 15 figures, 3 table

    Measuring the impact of observations on the predictability of the Kuroshio Extension in a shallow-water model

    Get PDF
    In this paper sequential importance sampling is used to assess the impact of observations on a ensemble prediction for the decadal path transitions of the Kuroshio Extension (KE). This particle filtering approach gives access to the probability density of the state vector, which allows us to determine the predictive power — an entropy based measure — of the ensemble prediction. The proposed set-up makes use of an ensemble that, at each time, samples the climatological probability distribution. Then, in a post-processing step, the impact of different sets of observations is measured by the increase in predictive power of the ensemble over the climatological signal during one-year. The method is applied in an identical-twin experiment for the Kuroshio Extension using a reduced-gravity shallow water model. We investigate the impact of assimilating velocity observations from different locations during the elongated and the contracted meandering state of the KE. Optimal observations location correspond to regions with strong potential vorticity gradients. For the elongated state the optimal location is in the first meander of the KE. During the contracted state of the KE it is located south of Japan, where the Kuroshio separates from the coast

    Anderson transitions in three-dimensional disordered systems with randomly varying magnetic flux

    Full text link
    The Anderson transition in three dimensions in a randomly varying magnetic flux is investigated in detail by means of the transfer matrix method with high accuracy. Both, systems with and without an additional random scalar potential are considered. We find a critical exponent of ν=1.45±0.09\nu=1.45\pm0.09 with random scalar potential. Without it, ν\nu is smaller but increases with the system size and extrapolates within the error bars to a value close to the above. The present results support the conventional classification of universality classes due to symmetry.Comment: 4 pages, 2 figures, to appear in Phys. Rev.

    Long-term Observations of Three Nulling Pulsars

    Full text link
    We present an analysis of approximately 200 hours of observations of the pulsars J1634-5107, J1717-4054 and J1853++0505, taken over the course of 14.7 yr. We show that all of these objects exhibit long term nulls and radio-emitting phases (i.e. minutes to many hours), as well as considerable nulling fractions (NFs) in the range 67%90%\sim67\,\% - 90\,\%. PSR J1717-4054 is also found to exhibit short timescale nulls (140 P1 - 40~P) and burst phases (200 P\lesssim 200~P) during its radio-emitting phases. This behaviour acts to modulate the NF, and therefore the detection rate of the source, over timescales of minutes. Furthermore, PSR J1853++0505 is shown to exhibit a weak emission state, in addition to its strong and null states, after sufficient pulse integration. This further indicates that nulls may often only represent transitions to weaker emission states which are below the sensitivity thresholds of particular observing systems. In addition, we detected a peak-to-peak variation of 33±1%33\pm1\,\% in the spin-down rate of PSR J1717-4054, over timescales of hundreds of days. However, no long-term correlation with emission variation was found.Comment: 10 pages, 8 figures, accepted for publication in MNRA
    corecore